Zhentao Shi
Nov 15, 2021
Time series data: (yt,xt)Tt=1
Cross sectional data: (yi,xi)Ni=1
Panel data
In statistics, panel data is often called longitudinal data
fama-french.csv
familyfirms.csv
: 2254 firm-year observations during 1992–1999library(plm)
d0 <- read.csv("familyfirms.csv", header = TRUE)
dp <- pdata.frame(d0, index = c("company", "year") )
head(dp)
## year company agefirm meanagef assets bs_volatility founderCEO Q
## 1045-1992 1992 1045 58 95 18706 0 0 1
## 1045-1993 1993 1045 59 95 19326 0 0 1
## 1045-1994 1994 1045 60 95 19486 0 0 1
## 1045-1995 1995 1045 61 95 19556 0 0 1
## 1045-1996 1996 1045 62 95 20497 0 0 1
## 1045-1997 1997 1045 63 95 20915 0 0 1
## digit2_in
## 1045-1992 45
## 1045-1993 45
## 1045-1994 45
## 1045-1995 45
## 1045-1996 45
## 1045-1997 45
Historically, panel data was economists’ first encounter of big data
Statistical efficiency
Model heterogeneity
yit=x′itβi+uit
in which βi cannot be consistently estimated with small T
yit=x′itβ+uit
in which the pooled OLS is consistent with convergence rate √NT
The null hypothesis: β1=β2=⋯=βN=β
If the dimension of βi is p, then there are in total p(N−1) linear restrictions
The F-statistic
F=(RSSR−RSSU)/[p(N−1)]RSSU/[N(T−p)]
F∼F-distribution(p(N−1),N(T−p))
yit=αi+x′itβ+uit, uit∼(0,σ2)
Within-group demean
For each i, average over the T observations to obtain
ˉyi=αi+ˉx′iβ+ˉui
yit−ˉyi=(xit−ˉxi)′β+(uit−ˉui)
to get rid of αi, the source of endogeneity
Regress (yit−ˉyi) on (xit−ˉxi) to obtain ˆβ
Recover the individual intercept ˆαi=ˉyit−ˉx′iˆβ
Necessary condition for consistency: E[(xit−ˉxi)(uit−ˉui)]=0
Sufficient condition for consistency and unbiasedness: E[uit|(xit)Tt=1]=0 (strict exogeneity)
\begin{align} y_{it} & = \sum_{j=1}^N \alpha_j \mathbb{I}\{j = i\} + x_{it}'\beta + u_{it} \\ &= \boldsymbol{\alpha}^{\prime} \mathbf{D}_i + x_{it}'\beta + u_{it} \end{align} where \mathbf{D}_i is an N-vector of dummy variables (0,\ldots,0,1,0,\ldots,0)'
\begin{align} y_{it} & = \alpha + x_{it}'\beta + (v_i + u_{it}) \\ & = \alpha + x_{it}'\beta + w_{it}, \end{align}
where w_{it}:= v_i + u_{it} as well
For each i, the common v_i induces correlation between w_{it} and w_{is} for t\neq s
Let \mathbf{w}_{i} = (w_{i1},\ldots,w_{iT})'
For simplicity, we assume
\Omega := E[\mathbf{w}_i \mathbf{w}_i'] = \sigma_v^2 \mathbf{1}_N \mathbf{1}_N'+ \sigma^2 \mathbf{I}_N
\Omega^{-1/2} \mathbf{y}_i= \Omega^{-1/2} \alpha \mathbf{1}_T + \Omega^{-1/2} \mathbf{x}_{i}'\beta + \Omega^{-1/2} \mathbf{w}_{i},
and notice \Omega^{-1/2} E[\mathbf{w}_i \mathbf{w}_i'] \Omega^{-1/2} = \mathbf{I}_N
Generalized least squares (GLS) estimator
Feasible estimation:
pooling
eq <- log(Q) ~ founderCEO + log(assets) + log(agefirm+1) + bs_volatility
OLS.lm <- lm( eq, data = dp ) # some agefirm = 0. add one to take log
OLS.plm <- plm( eq, data = dp, effect = "individual", model = "pooling" )
print(OLS.lm)
##
## Call:
## lm(formula = eq, data = dp)
##
## Coefficients:
## (Intercept) founderCEO log(assets) log(agefirm + 1)
## 0.598758 0.196479 -0.001051 -0.022578
## bs_volatility
## -0.093353
##
## Model Formula: log(Q) ~ founderCEO + log(assets) + log(agefirm + 1) + bs_volatility
##
## Coefficients:
## (Intercept) founderCEO log(assets) log(agefirm + 1)
## 0.5987582 0.1964793 -0.0010507 -0.0225779
## bs_volatility
## -0.0933531
FE <- plm( eq, data = dp, effect = "individual", model = "within" )
RE <- plm( eq, data = dp, effect = "individual", model = "random" )
print(FE)
##
## Model Formula: log(Q) ~ founderCEO + log(assets) + log(agefirm + 1) + bs_volatility
##
## Coefficients:
## founderCEO log(assets) log(agefirm + 1) bs_volatility
## 0.03713317 0.00043818 0.36230453 -0.21626849
##
## Model Formula: log(Q) ~ founderCEO + log(assets) + log(agefirm + 1) + bs_volatility
##
## Coefficients:
## (Intercept) founderCEO log(assets) log(agefirm + 1)
## 0.207554 0.104535 0.030767 0.011166
## bs_volatility
## -0.170891
The random effects model is a special case of the fixed effects model
RE can be tested
Idea of testing:
W = (\hat{\beta}_{FE} - \hat{\beta}_{RE} )' (var(\hat{\beta}_{FE}) - var(\hat{\beta}_{RE}) )^{-1} (\hat{\beta}_{FE} - \hat{\beta}_{RE} ) \stackrel{d}{\rightarrow} \chi^2 (p)
##
## Hausman Test
##
## data: eq
## chisq = 38.205, df = 4, p-value = 1.017e-07
## alternative hypothesis: one model is inconsistent
y_{it} = \alpha_i + x_{it}' \beta + \rho y_{i,t-1} + u_{it}
where u_{it} is uncorrelated with y_{i,t-1}
Let \bar{y}_{i,-1} = T^{-1} \sum_{t=1}^T y_{i,t-1} (assume y_{i,0} is observable in the sample). Within-group transformation produces correlation in (y_{i,t-1}-\bar{y}_{i,-1}) and ( u_{it} - \bar{u}_i)
Demonstration: consider \beta = 0 and T = 2 for simplicity:
0.5(y_{i,2} - y_{i,1}) = 0.5\rho(y_{i,1}-y_{i,0}) + 0.5(u_{i,2}-u_{i,1})
correlation arises between y_{i,1} and u_{i,1}
y_{it} - \bar{y}_i = \rho (y_{i,t-1}-\bar{y}_{i,-1}) +( u_{it} - \bar{u}_i)
Nickell (1981)
The correlation
\begin{align} cov[\bar{y}_{i,-1},u_{it}] & = cov\left[ T^{-1} \sum_{s=1}^T y_{i,s-1}, u_{it} \right] \\ & = cov\left[ T^{-1} \sum_{s = j+1}^T y_{i,s-1}, u_{it} \right] \\ & \approx \frac{\sigma^2}{(1-\rho)T} \end{align}
\hat{\rho} - \rho_0 = - \frac{cov[\bar{y}_{i,-1}, u_{it}]}{var[y_{i,t-1} - \bar{y}_{i,-1}]} \approx - \frac{\frac{\sigma^2}{(1-\rho)T}}{\frac{1}{(1-\rho^2)T}} = -\frac{1+\rho}{T}
\begin{align} y_{it} & = \alpha + \rho y_{i,t-1} + (v_i + u_{it}) \\ & = \alpha + \rho (\alpha + \rho y_{i,t-2} + v_i + u_{i,t-1})+ (v_i + u_{it}) \\ & = \cdots \\ \end{align}
makes it clear that y_{i,t-1} and w_{it} = v_i + u_{it} are correlated as
cov[y_{i,t-1},w_{it}] = (\rho + \rho^2 + \cdots + \rho^{t})\sigma^2_v
\Delta y_{it} = \rho \Delta y_{i,t-1} + \Delta u_{it}
where \Delta y_{it} = y_{it} - y_{i,t-1} is the differenced version of y_{it}. are Similarly defined are \Delta y_{i,t-1} and \Delta u_{it}
\begin{align} cov[\Delta y_{i,t-1}, \Delta u_{it}] & =E[(y_{i,t-1} - y_{i,t-2}) (u_{it} - u_{i,t-1})] \\ & =E[ y_{i,t-1} u_{i,t-1} ] \\ & = \sigma^2 \end{align}
y_{it} = \alpha_i + \rho y_{i,t-1} + e_{it}
\Delta y_{it} = \alpha_i + \beta y_{i,t-1} + \sum_{k=1}^L \gamma_{ik} \Delta y_{i,t-k} + e_{it}
similar to that for the augmented Dicky-Fuller test
Null hypothesis: \beta = \rho - 1 = 0
Alternative hypothesis: \beta < 0
Asymptotics: Large T and large N
At appropriate rates for N and T, the (modified) t-statistic is asymptotically N(0,1)
\Delta y_{it} = \alpha_i + \beta_i y_{i,t-1} + \sum_{k=1}^L \gamma_{ik} \Delta y_{i,t-k} + e_{it}
which allows heterogeneous \beta_i across individuals
Null hypothesis: \beta_1 = \beta_2 = \cdots = \beta_N = 0
Alternative hypothesis: Some \beta_i < 0
Test statistic: another modified t-statistic which is asymptotically N(0,1) under the null
package punitroots
Syntax
purtest(object, test = c("levinlin", "ips"),
exo = c("none", "intercept", "trend"),
lags = c("SIC", "AIC"), pmax = 10)
object
: a T\times N matrixtest
:
levinlin
for Levin, Lin and Chu (2002)ips
for Im, Pesaran and Shin (2003)exo
: the deterministic component in the time serieslags
: lag selection criterion andpmax
: the number of maximum lagsSpace, Right Arrow or swipe left to move to next slide, click help below for more details